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Summary

A novel approach to battery hifetime prediction has been evaluated by
application to life-cycling data collected for 108 ESB EV-106 6-V golf cart
batteries (tests conducted by TRW for NASA-Lewis) This approach utilized
computerized pattern recogmtion methods to examine mitial cycling mea-
surements and classify each battery into one of two classes ‘long-lived” or
“short-lived” The classifier program was based on either a linear discrimi-
nant or nearest neighbor analysis of a training set consisting of- each member
of the EV battery set which had failed, the relative hfetime of each mem-
ber — normalized with respect to test conditions; and a set of ‘“features”
based on measurements of the initial behavior

The raw data set included capacity trends over the first 8 or 9 cycles
and records of specific gravity and water-added for each cell after mitial
cycling Features defined from these raw data included the individual data
items as well as transformations and combinations of these data All features
were represented as standardized variables. It was shown that lifetime predic-
tion of batteries within the two categories defined could be made with about
87% accuracy. It 1s concluded that for a similarly-manufactured battery set,
relative lifetime prediction could be based on initial measurements of the
same type examined here

Introduction

Traditionally, battery hifetime prediction has involved the measurement
of Iifetimes for a sub-set of a “uniform” population of batteries, and then
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attributing the measured life characteristics of the sub-set to the general
population Under 1deal circumstances, one could then predict the average
hfetime and related variance for a set of batteres, from that same popula-
tion, operated under specified conditions It has not generally been possible,
however, to predict the hfetime of a specific battery relative to other
batteries in the population

For many reasons it would be desirable to predict hifetimes of specific
batteries 1n such a way as to discriminate in advance between those which
should be “long-lived” or “short-lived” The most obvious advantage would
be to allow pre-selection of the most reliable power sources for critical

I3 1 + +h
missions such as space exploration or other remote operations

This concept of specific lifetime prediction was explored previously by
Byers and Perone [1] for sealed Ni/Cd space cells tested at Crane Naval
Weapons Support Center The basic approach involved the use of pattern
recognition techniques to determine 1if measurements of cell initial character-
1stics could be used to predict the hifetime of specific cells relative to other
cells with common origins operated under similar conditions The basic
premise was that the ultimate fate of a cell 1s reflected in a multi-vanate
examination of its 1nitial fabrication and/or behavioral characteristics These
measurements of imitial characteristics become the ‘““features” or ‘‘descrip-
tors” utihized 1n pattern recognition analysis to determine if cells which are
destined to be ‘“long-lived” can be discriminated from those destined to be
“short-lived”

The results of this mitial study of pattern recognition lifetime predic-
tion [1] demonstrated that N1/Cd cells from the same production lot, with
similar fabrication and operational conditions, could be categorized from
mnitial measurements with virtually 100% accuracy. Combinations of as few
as 1 to 3 features were required to discriminate between predicted ‘‘short-
lived” and “long-lived” cells These features were derived from manufac-
turer’s pre-test data documenting behavior during initial acceptance cycle
tests The most useful features involved measurements of voltage or pressure
changes near the end of a charging cycle Cluster analysis of these features
suggested that a quantitative value of relative hfetime might be assigned to
a specific cell based on the average lhife of its nearest neighbors in feature
space (This last observation was very tentative because of the small size of
the individual clusters 1n the limited data set )

The results of this initial study provide several implications

(1) that for a new set of N1/Cd cells fabricated 1dentically to the previ-
ous set 1t would be possible to predict lifetimes of specific cells, relative to
all other cells operated similarly, based on pattern recognition analysis of
mitial cycle test data,

(n) that certain initial measurements may be more sensitive lifetime pre-
dictors, and these may be useful in 1dentifying eritical fabrication/operation-
al factors dictating lifetime,

(11) that quantitative lifetime prediction would be possible by applying
cluster analysis to a larger data set;
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(1v) that imminent failure of batteries might be predicted from moni-
toring of current cycle behavior

These mmplications need to be evaluated 1n a systematic future study
One premise of the earlier work which will be investigated here 1s the general
applicabiity of the observations with Ni/Cd cells to other battery types
It 1s the primary goal of the study reported here to evaluate this premise
by applying the same lifetime prediction techniques to a set of lead/acid
batteries

The rationale for examining the TRW data base for life-cycling of 108
ESB EV-106 6-V. golf cart batteries [2] 1s as follows.

the study was well-designed and well-documented; the number of 1tems
with common orngns and test conditions was sufficiently large for rehable
pattern recognmition studies (which require a large ratio of patterns to fea-
tures [3]); and lead/acid batteries represent a mature technology so that
positive results could be directly useful

One limitation of the use of the TRW data base, however, is the fact
that detailed voltage-time data were not uniformly available Thus, this
study was limited to an examination of more indirect evidence of battery
characteristics These included capacity trends over the first 8 or 9 cycles,
and acceptance test measurements of specific gravity and water addition
required for each cell

Description of the TRW data base

The test program undertaken by TRW [2] was designed to apply a daily
charge/discharge cycle program to 108 lead/acid 6-V batteries until failure
The conditions controlled mcluded characteristics of a chopper-controlled
discharge (frequency, duty cycle), average/peak discharge current, and depth
of discharge

Over a 2-year life-cycling period, 69 percent. of the batteries failed
Experimental correlations showed that battery cycle life was inversely pro-
portional to depth of discharge and discharge current No significant effect
on lhfetime was detected for different chopper discharge frequencies and
duty cycles The failure distribution for items with continuous (dc)
discharge current was similar to those items with chopper-controlled
discharges.

The faillure mode observed involved a gradual loss of capacity to the
half-capacity failure point Twenty-three of the failed batteries were sub-
Jected to autopsies which showed consistent evidence of cell element aging
Every battery examined exhibited short circuits caused by metallic bridging
across the plates at separator edges Except for two early failures, every
failed item examined exhibited buckled positive plates and oxidized positive
grids This umiformity of faillure mode and physical aging characteristics
establishes a situation for pattern recognition analysis which 1s much more
nearly 1deal than for the earlier study with N1/Cd cells [1].
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An introduction to pattern recognition methods

There are many useful techniques for mathematical pattern recognition
The reader 1s referred to any of several useful texts on this subject [4 - 9] for

detailed discussion A bnef introduction to the concepts will be provided

here

Mathematical pattern recognition methods take advantage of the com-
puter’s ability to manage multi-dimensional information and perform a series
of relatively simple, but numerous, statistical and geometrical computations
A generalized pattern recognition procedure involves several steps The first
step involves accumulation of observable data (d-dimensional pattern space)
from a physical system Because the raw data space may be of large dimen-
sion, some reduction of dimensionality is deswred to obtain subsequent
rehable classification. This step nvolves the definition of r-dimensional
feature space, where r < d. The reduction of dimensionality should include
identification of those features which correlate most strongly with inter-class
information The next step involves application of a decision algorithm
appropriate for classifying the individual sources of information mto any of
Z different classes These decisions are applied in r-dimensional feature space

Classification methods

Various generally-applicable mathematical procedures for pattern classi-
fication have been developed Two of these appear to be particularly useful
for the studies here One of these involves Linear Discriminant Analysis
(I.LDA) [4, 7], and the other involves the k-Nearest Neighbor (kNN) classifi-
catlon crltenon [7, 8].

Tramnable pattern classifiers, a sub-class of learning machines [4], are
used in Linear Discriminant Analysis The r pieces of information (r features)
describing a pattern can be plotted as a point in r-dimensional feature space
It 1s assumed that patterns with similar properties will occupy the same
region of feature space. LDA pattern classification involves finding hnear
boundaries which will discriminate between these spatial regions.

A two-category pattern classifier can be defined by a discriminant func-
tion which 1s a scalar, single-valued function of the pattern If the patterns to
be classified are linearly separable, then the discriminant function takes the
form

r+l1

§= 2w, (1)
1=1

where x, 1s the ith component of a pattern having r features, x, ., equals one,
w, 1s the weight corresponding to the ith component, and s 1s the scalar
result The category in which a given pattern 1s placed 1s determined by the
sign of s

A set of representative patterns of known classes, the training set,
1s presented sequentially to the classifier When a pattern 1s incorrectly
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categorized, the weights of eqn (1) are adjusted in a manner to correct the
error If the training set is linearly separable, this procedure will converge to
a single weight vector which can correctly classify all the patterns Subse-
quently, unknown patterns of similar origins can be classified by the trained
classifier

The k-Nearest Neghbor classification rule simply states that an
unknown pattern 1s classified according to a majonty vote of its k-nearest
neighbors 1n r-dimensional feature space Computationally, the Euclidian
distances between the single r-dimensional point representing the pattern in
question and all other pattern points in r-space must be calculated to find
the nearest neighbors The distance, 1n r-space, between two points t and y 1s

, 1/2
-Du = [ Z (xlk _—xjk)2j| (2)
k=1

Because the distances are a non-linear function of the features, the RNN
method can be applied to non-linear classification problems

Feature selection techniques

Feature selection involves reducing the dimensionality of a problem by
eliminating pattern descriptors unnecessary for classification and retaining a
sub-set of pattern descriptors (features) which are required for classification
Statistical feature selection methods of the principal components type work
well for data sets with well-defined distribution functions

For non-parametric classification problems, various transform methods
have been used [10-13], as well as a host of other basically empirical
approaches However, most workers agree that only an empirical trial-and-
error, all-possible-combinations approach guarantees finding the optimum
feature set. Thus, 1n our work a systematic trial-and-error feature elimination
procedure was used [13], guided by visual examination of feature plots All-
possible-combinations of small feature sets were also used.

Results and discussion

Definition of features and sets for lifetime prediction

Lifetime distributions

Figure 1 shows the overall lifetime distribution for all 108 batteries in
the TRW study. (The large block at the upper end of the distribution repre-
sents 32 batteries unfailed at the end of the test period of 589 cycles ) One
of the most crucial steps in the examination of the life-cycling data 1s the
assignment of battery lifetime mnto various categories such as ‘‘short”,
“long”, “average”, or other The approach used 1n the previous study [1]
involved the use of naturally-occurring break(s) in the failure distribution(s)
to define ‘long-lived” and ‘‘short-lived” classes The same approach was
adopted here
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Fig 1 Lifetime distribution for all 108 batteries Large block at upper end represents 32
unfailed batteries after 589 cycles

Fig 2 Lifetime distributions for the DOD = 50 sub-set of 48 items and the DOD = 75
sub-set of 30 items Blocks at upper ends represent unfailed batteries after 589 cycles

The valdity of the failure distribution for hfetime categorization
depends on the uniqueness of the data sub-set selected The set presented 1n
Fig 1 includes all items regardless of variations 1n test conditions, and as
such 1s not very useful In this study, for example, i1t has been observed that
hfetime 1s dependent on depth of discharge (DOD) and on average discharge
current (IAV) Figure 2 1illustrates the differences in hfetime distributions for
DOD =50 and DOD =175 (Agan, the upper block in each case represents
items unfailed after 589 cycles.) Each of these distributions could be further
sub-divided into sub-sets with constant JAV Unfortunately, these sub-set
limits would be too restrictive for analysis of the TRW data base, because no
more than 15 1tems could be included i a single sub-set Three different
nominal depths of discharge were applied — 25, 50, and 75%, and 7 different
values of AV were employed, varying from 20 to 260 A

Because the rehability of pattern recognition assignments decreases
significantly when the ratio of patterns to features drops below about 5 [3],
1t 1s desirable to utilize a larger pattern set to allow pattern recognition in a
higher dimension feature space The basic approach taken here to define
larger sub-sets of the test data for lifetime prediction nvolved, firstly,
normalizing the cycle-life characteristic with respect to influential param-
eters Secondly, the items were grouped according to DOD 1n examining the
failure distributions This allowed the identification of 3 sub-sets, corre-
sponding to the 3 DOD values, 25, 50, and 75 Because only 27% of those in
the first sub-set had failed (8 items) by the end of the test program, that sub-
set was not useful here The other two sub-sets had 81% and 97% failures (39
and 29 items, respectively), and were useful sub-sets for pattern recognition

Normalized lifetime distributions
Normalization of the cycle-life characteristic was accomplished accord-
ing to one of two relationships The first was referred to as “REGLIFE” It



29

was equated to the deviation of observed lifetime from the regression fit to
the expression

FLCYNO = A + BxIAV (3)

where FLCYNO 1s the number of cycles to failure, and IAV 1s the average
discharge current The constants, A and B, are determined from a fit to all
data where DOD 1s constant Then, for each failed battery m the DOD sub-
set, the value of REGLIFE 1s calculated

REGLIFE = FLCYNO — A — B*IAV (4)

The second normalization function was based on the calculation of a
relative lifetime, referred to as “RELIF” It was equated to the ratio of the
observed lifetime for a specific battery to the average hifetime for all other
batteries where DOD and IAV are the same

RELIF = FLCYNO/AVG(FLCYNO) (5)

The distributions of REGLIFE and RELIF were determined for all
batteries 1n the two sub-sets corresponding to DOD = 50 and 75 (For con-
venience, these will be referred to as the DOD50 and DOD75 sub-sets ) For
the DOD50 sub-set, the maximum number of members was 48 However, 3
batteries failed prematurely at less than 173 cycles and were eliminated
arbitrarily from consideration This provided a useful sub-set of 45 1tems
Nine batteries had not failed by the end of the test period. (Six of these 9
were tested under the least strenuous conditions (JAV = 20 A) ) Each of
these 1tems was assigned an arbitrary hifetime of 625 cycles, obtained from
an extrapolation of a plot of hfetimes vs JAV The maximum measured life-
time was 589 cycles, after which the test was discontinued The median
Iifetime for the DOD50 sub-set of 45 1items was 495 cycles.

For the DOD75 sub-set, the maximum number of members was 30
There were no premature failures. Only one battery was unfailed at the end
of the test period It was assigned an extrapolated arbitrary lifetime of 600
cycles The median hifetime for the 30-1item DOD75 sub-set was 408 cycles

The values of the regression constants determined from the fits to eqn.
(3) for the DOD50 and DOD75 sub-sets are listed 1n Table 1. Figures 3 and 4
present the distributions of REGLIFE and RELIF for the DOD50 and
DOD75 sub-sets of 45 and 30 1items, respectively By contrast with Fig. 2, 1t

TABLE 1

Regression constants for fits to eqn (1)

Test sub-set Regression constants
A (cycles) B (cycles/A)
DOD50 608 9 —0 7864

DOD75 4447 —0 2526
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Fig 3 Lifetime distributions based on REGLIFE normalization function (REGLIFE =
FLCYNO — A —B#*IAV ) (A) For DOD = 50 sub-set of 45 items, with 3 premature fail-
ures excluded (B) For DOD = 75 sub-set of 30 items
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Fig 4 Lifetime distributions based on RELIF normalization function (RELIF =
FLCYNO/AVG(FLCYNO)) (A) For DOD = 50 subset of 45 items, with 3 premature
failures excluded (B) For DOD = 75 sub-set of 30 items

appears 1n each case that the DOD50 and DOD75 distributions might be
combined 1nto a single set However, subtle differences in the DOD50 and
DOD75 distributions are observed for both REGLIFE and RELIF One of
these differences 1s obvious 1n comparing the ranges of the distributions for
the DOD50 and DOD75 sub-sets 1n Figs 3 and 4 In both cases the DOD75
range 1s considerably broader than for the DOD50 range Another funda-
mental difference becomes clear when class boundaries are defined by
pattern recognition as discussed below

Categorization

Examination of Figs 3 and 4 shows that some natural breaks appear in
the normalized failure distributions These can be used as a first cut assign-
ment of Lifetime classes for pattern recognition. For example, in Fig 3(A)
and (B) 1t appears that several possible ‘“breaks’’ might be considered to
distinguish between ‘‘short-lived” and “long-lived” classes. The obvious
breaks in Fig 3(A) occur at REGLIFE values of ~(--80, —35, and +70),
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those 1n Fig 3(B) occur at REGLIFE values of ~(—150, —80, 0, and +100)
However, several other breaks appear when any regions of the histograms
are expanded

The selection of any particular boundary for categornzation depends on
two things One of these 1s the purpose of the categorization. For example,
several different binary categorizations could be considered, where the pur-
poses might be to identify the very best cells, the very worst cells, or to
simply distinguish between the two classes “better’” and “worse’. In addi-
tion, a 3-class categorization could be considered which included the best,
worst, and middle classes Arbitrary boundaries can be assigned based on
naturally occurring breaks once the purpose has been defined. For example,
If a simple binary categorization of “better/worse’ 1s desired, the first-cut
boundaries for Fig 3(A) and (B) might be —36 and 0, respectively

The second criterion for selection of category boundaries 1s based on
the observed performance of the selected boundary for pattern recognition
classification of cells with known performance The selected boundaries can
be further refined by adjusting them for optimum classification accuracy
from pattern recognition examination of measurement features

Definition of features for pattern recognition

The features used for pattern recognition lifetime prediction were taken
from documentation of the prelhminary examination and nitial acceptance
tests applied to all EV-106 batteries prior to commencing life-cycle testing.
These included measurements of the specific gravities, battery weights, and
volume of water required to achieve uniform levels for each cell/battery as
recerved, as well as discharge capacity values over 8 or 9 acceptance cycles

These 1nitial acceptance data were used to generate pattern features for
each battery The most useful features fell into 4 categories

(1) Initial Specific Gravity

(11) Initial Water Volume Added

(1) Inmitial Capacity Trends

() Transformed/Combined Variables
A total of 10 features proved to be useful, and these are summarized in
Table 2

A summary of the variances of each of the pattern features for two
different sub-sets 1s provided in Table 3 Because of the wide disparity in
values of the features, all pattern recognition studies were conducted with
standardized vanables, where the standardized value, x(s), 1s defined

x(s) = (x(1) —x(ave))/(s.d ) (6)

Thus, the ranges of all standardized vanables were ~(+/—3)

As expected, some of the features were highly correlated However, as
observed 1n previous studies [13 -15], the use of statistically correlated
features can be justified and useful for pattern recognition where normal
distributions are not observed. This 1s certainly the case for our data.
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TABLE 2
Classification features for each EV-106 battery based on EV-106 acceptance tests

Name Type Description
Specific gravity

AVSG Average specific gravity 3 cells
Water volume added

MXH Volume for cell requiring most water
Initial capacity trends

INCAP Average capacity of acceptance cycles

MXCP Maximum capacity from acceptance cycles

MNCP Minimum capacity from acceptance cycles
Transformed variables

AVSG2 (AVSG)?

MXH2 (MXH)?

SGH AVSG*MXH

DLCP MCXP — MNCP

INDL INCAP/DLCP

TABLE 3

Feature values for two sub-sets

Feature DOD50 (45) DOD75 (30)

Avg SD Avg SD
AVSG 1278 0 006 1278 0 004
AVSG2 1633 0014 1634 0010
MXH (ml) 91 8 387 917 36 4
MXH2 (ml)? 9888 7728 9682 7031
SGH (ml) 117 x 104 42x10% 117 x 104 46x10%
INCAP (A h) 106 9 15 107 2 11
MXCP (A h) 114 2 21 1137 22
MNCP (A h) 103 8 21 104 3 11
DLCP (A h) 104 23 95 22
INDL 10 8 24 119 25

The selection of an optimum feature set for classification 1s a crucial
part of any pattern recognition study, and the procedure used here 1s
described below

Data analysis

Classification procedures

Two different techniques were used for pattern recognition lifetime
prediction Linear Discriminant Analysis (LDA), and k-Nearest Neighbor
analysis (kNN) (These were discussed in an earlier section ) The LDA meth-
od allows accurate classification when classes can be separated by a linear
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boundary (line, plane, hyperplane) in feature space Once a discriminant
function 1s found which provides accurate classification, the application of
this function to pattern recognition 1s computationally ssimple However, the
restriction to hinearly separable classes precludes application in many cases

The RNN method allows accurate classification as long as items of
similar class form clusters in feature space These need not be linearly sepa-
rable for classification, as long as significantly different spatial distributions
are obtained However, the RNN algorithm requires much more extensive
computations at the time of classification

For simplhcity, a value of 2 =1 was used for nearest neighbor calcula-
tions A “leave-one-out” procedure was used to evaluate classification
accuracy That 1s, each item was removed from the training set, and treated
as an item of unknown class Its class 1s then assigned to be the same as its
nearest neighbor It 1s then returned to the training set, and the next item 1s
removed for classification

An 1terative feature-weighting procedure was also used in the ENN
method here That 1s, feature weights were systematically varied by multiples
of 2 to obtain an optimum combination of weights for maximum accuracy.

Feature plots

An examination of pattern distributions in feature space provides useful
msight to the applicability of LDA or kNN classification techniques Figure 5
shows a feature plot of INCAP and SGH for the DOD75 sub-set, where class
assignments were based on the optimum boundary for the REGLIFE
distribution (discussed below) In this case the two classes are linearly
separated 1n 2-d feature space Thus, the LDA method works very well for
classification One possible linear boundary which would provide accurate
classification 1s also illustrated n Fig 5 The ENN method does not work
well for this distribution

Figure 6 shows a weighted feature plot of INDL and MXH2 for the
DOD50 sub-set, where class assignments were based on the optimum bound-
ary for the REGLIFE distnibution Clearly, the long-lived and short-lived
classes exhibit different distributions, but are not linearly separable in 2-
space When a third feature (SGH) 1s added, the class distributions become
separated sufficiently to allow accurate ENN classification (see Results
Section)

Feature elimination procedures

Two different methods were used to obtain a minimum feature set for
optimum classification One of these involved using all possible combinations
of 1, 2, or 3 features from those defined in Table 2 The other involved a
sequential elimination procedure [13]

The sequential elimination procedure involved first conducting classifi-
cation with all features used Then one feature 1s removed and classification
1s again conducted. If classification accuracy is unchanged or improved, the
feature 1s permanently eliminated. If not 1t 1s returned to the feature set.
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Fig 5 Feature plot for DOD = 75 sub-set of 30 items Lifetime class assignments based
on optimum boundary from REGLIFE distribution (see Table 4) (REGLIFE =
FLCYNO — A — B*IAV )

Fig 6 Weighted feature plot for DOD = 50 sub-set of 45 items Lifetime class assign-
ments based on optimum boundary from REGLIFE distribution (see Table 5)
(REGLIFE = FLCYNO — A — B*JAV )

This process continues until a mimmimal feature sub-set 1s obtained where no
further 1mprovement 1n classification accuracy 1s observed by elimination
This method proved useful for minimal feature sets greater than 3 However,
the elimination sequence 1s too arbitrary to guarantee identification of the
optimum feature sub-set, particularly for small sets The all-possible-combi-
nations approach was practical and effective for up to 3 features

Optimizing class boundaries from lifetime distributions

Although several different category definitions were used 1n this study,
this report focusses on the simple binary classification 1ssue where batteries
were simply divided nto longer-ived and shorter-hved classes It was
expected that this would lead to some overlap in the middle, and that less
than 100% accuracy would be achieved. However, 1dentification of these two
classes appeared to be a realistic goal for real applications of these methods
to battery hfetime prediction When only high accuracy was the goal we
were able to achieve that by discrnminating only the very best or the very
worst batteries from the rest

The method used to identify the optimum class boundaries from life-
time distributions involved, first, selecting arbitrarily, a naturally-occurring
break in the distribution Pattern classification was apphed to the defined
classes as a training set, and the resultant accuracy observed The boundary
was then adjusted in either direction searching for maximum classification
accuracy

Classification results

Examination of Tables 4 and 5 verifies that pattern recogmtion
provides accurate prediction of hfetime class based on battery acceptance
test data Both the LDA and kNN methods proved useful The LDA method
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TABLE 4

Summary of classification results with linear discriminant analysis
(Long-hved batteries = class 1, short-lived = class 2)

DOD Data base sub-set Classification Features required  Classification results
No Class dis. criterion/boundary % %(2) %(1)
items tribution correct

(1)/(2)
50 39(a) 29/10 RELIF/(0 909) (5) AVSG2, MXH2, 87 2 100 828
SGH, INDL,
INCAP
50 45 38/7 RELIF/(0 877) (4) MXH2, SGH, 855 842 57
INDL, INCAP
50 44(b) 32/12 REGLIFE/(—34 34) (3) SGH, INDL, 818 920 780
A=6089 INCAP
B= —0 7864

75 30 16/14 RELIF/(0 977) (2) SGH, INCAP 83 3 857 812

75 30 16/14 REGLIFE/(—15 04) (2) SGH, INCAP 83 3 857 812

50/75 69(a) 57/12 RELIF/(0 878) (4) MXH2, INDL, 812 750 825

DLCP, INCAP

(a) Features of batteries with JAV = 20 removed from data base (All but one unfailed at
end of test )

(b) One battery (s/n = 16) removed from data base because of anomalously low lhife for
IAV = 20

TABLE 5

Summary of classification results with K-nearest neighbor analysis
(Long-lived batteries = class 1, short-lived = class 2)

DOD Data base sub-set Classification Features required  Classification results
. cnt b d
No Class dis- criterion/boundary % %(2) %(1)
items tribution Correct

(1)/(2)
50 39(a) 29/10  RELIF/(0 909) (3) AVSG2, MXH2, 87 2 700 931

DLCP
50 45 32/13  REGLIFE/(—34 34) (3) MXH2, SGH, 844 846 844
A=6089 INDL
B= —07864
75 30 17/13  RELIF/(0 953) (2) SGH, DLCPor 66 7 692 647
MXH2, DLCP
75 30 18/12  REGLIFE/(--22 2) (2)SGH, INDLor 767 667 833
A=4447 MXH2, INDL
B= —02526
50/75 69(a) 57/12  RELIF/(0 878) (4) AVSG2, MXH2, 85 5 500 930
SGH, INCAP

(a) Features of batteries with JAV = 20 removed from data base (All but one (s/n = 16)
were unfailed at end of test )
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provided the most accurate lifetime classifications for all sub-sets For each
sub-set, overall classification accuracy of ~85% was achieved Best results
were obtained for the DOD50 sub-set, where classification accuracy for
short-lived batteries approached 100% High accuracy in identifying poten-
tial short-iived batteries provides a significant incentive for practical
applications of predictive ifetime classification

There did not appear to be any significant advantage for either of the
two hfetime normalization methods, REGLIFE or RELIF Both worked
well However, the RELIF distribution was the only one that could be used
for the DOD50/75 sub-set because the REGLIFE distributions for DOD50
and DOD75 were so different

The size of the DOD50 sub-set was varied in these studies to examine
the effects of various anomalies 1n the test items These are documented 1n
Tables 4 and 5 The primary concern was how to handle the batteries which
had not failed by the end of the test In one case (DOD50 sub-set with 39
items, (DOD50 (39)) all batteries where JAV was 20 A were excluded, as
most of these had not failled by the end of the test, The classification
accuracy for this sub-set was the highest of all, with short-lived batteries
being 1dentified with 100% accuracy

Another questionable test item was a battery (s/n = 16) 1n the DOD50
sub-set which had an exceptionally low lifetime (438 cycles) for an IAV of
20 A Because all other batteries tested under these conditions were unfailed
at the end of the test (589 cycles), this battery might be considered anom-
alous. By way of confirmation, an autopsy [2(a)] of this battery revealed that

than “lanrd and A ”» nAitin ot farimd Aftha
the negative ylavca were narG anG Qry’, a condivion nov ituna in any o1 wie

other autopsies Thus, this item was excluded from some of the sub-sets
examined Also, this battery was excluded from regression analysis of the
DOD50 sub-set Thus, the REGLIFE distribution 1s based on the lifetimes of
a 44-battery DOD50 sub-set

The boundary values of REGLIFE and RELIF required for optimum
classification accuracy are listed in Tables 4 and 5 It 1s interesting to note
that for both distributions the optimum boundary between short-lived and
long-hived cells 1s shifted to larger values for the DOD75 sub-set compared
with the DOD50 sub-set This results in a larger percentage of batteries being
categorized as ‘‘short-lived” m the DOD75 sub-set This 1s not inconsistent
with the fact that the actual depth of discharge was ~93%, as pointed out 1n
the TRW/NASA report [2] Moreover, for large values of TAV, the effective
depth of discharge approaches 100% Thus, 1t 1s not surprising that the
fraction of batteries which cluster together as a short-lived group 1s larger
for the DOD75 sub-set Also, the relatively poor classification accuracy
obtained when the DOD50 and DOD75 sub-sets are combined 1s very likely
explained by the significantly different distributions of the two classes for
the two sub-sets

The validity of the pattern recognition results 1s substantiated by the
low ratio of features to patterns required for accurate classification in each
case The largest ratio required was for the DOD50 (39) sub-set with the



37

LDA method (~1:8), (Table 4) Typically, the ratio required was ~1 15 In
any case, the ratios obtained were much lower than required (~1 5) for
credible pattern recognition classification [3]

The most useful features for predictive lifetime classification appeared
to be SGH and INCAP, based on the high frequency of thewr appearance in
the minimum feature sets for accurate classification This observation 1s
certainly consistent with the intuitive perception that differences in specific
gravity, water added, and 1nitial capacity trends should be meaningful pre-
dictors of battery life It 1s clear, however, that the relationships between all
features studied and battery lifetime are non-linear and multivariate

Conclusions

This study has clearly demonstrated the feasibility of predictive hfetime
classification for umiformly fabricated lead—acid batteries Moreover, the
utility of acceptance tests documenting trends m specific gravity, water
added, and mitial capacity has been shown. The accuracy of predictive classi-
fications 1s sufficiently high, particularly for the identification of short-lived
batteries, for the practical application of this method to be explored

Perhaps of more importance 1s the fact that this type of study may
provide new 1nsight to factors which affect battery hife — as reflected 1n the
useful features for predictive hifetime classification For example, we should
like to know why water-added 1s a sensitive indicator To examine such
questions, we are currently undertaking a new study documenting added
water and acid content changes (as well as other measures) during acceptance
cycles 1n a hife-cycling experiment with lead—acid batteries

The general applicability of the predictive features and the classification
methods studied here for lead—acid batteries of various origins remain to
be mvestigated In addition, 1t 1s desirable to examine the utihty of more-
detailed charge—discharge voltage trend data for predictive hifetime classifica-
tion Moreover, 1t would be desirable to examine a significantly larger
population of test articles to evaluate the feasibihity of quantitative hifetime
prediction which had been suggested mn the earher study with N1/Cd cells
(1]
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