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Summary 

A novel approach to battery lifetime prediction has been evaluated by 
application to hfe-cyclmg data collected for 108 ESB EV-106 6-V golf cart 
batteries (tests conducted by TRW for NASA-Lewis) This approach utihzed 
computerized pattern recognition methods to examine initial cycling mea- 
surements and classify each battery into one of two classes “long-lived” or 
“short-lived” The classifier program was based on either a linear discrimi- 
nant or nearest neighbor analysis of a training set consistmg of* each member 
of the EV battery set which had failed, the relative lifetime of each mem- 
ber - normalized with respect to test conditions; and a set of “features” 
based on measurements of the mltial behavior 

The raw data set included capacity trends over the first 8 or 9 cycles 
and records of specific gravity and water-added for each cell after nntial 
cyclmg Features defined from these raw data included the mdividual data 
items as well as transformations and combmations of these data All features 
were represented as standardized variables. It was shown that lifetime predic- 
tion of batteries within the two categories defined could be made with about 
87% accuracy. It is concluded that for a sim&uly-manufactured battery set, 
relative lifetime prediction could be based on mitral measurements of the 
same type exammed here 

Iutroductron 

Traditionally, battery lifetime prediction has mvolved the measurement 
of lifetimes for a sub-set of a “uniform” population of batteries, and then 
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attributing the measured life charactenstlcs of the sub-set to the general 
population Under ideal circumstances, one could then predict the average 
lifetime and related variance for a set of batteries, from that same popula- 
tion, operated under specified condltlons It has not generally been possible, 
however, to predict the lifetime of a specific battery relative to other 
batteries m the population 

For many reasons it would be desirable to predict hfetlmes of specific 
batteries m such a way as to dlscnmmate m advance between those which 
should be “long-lived” or “short-lived” The most obvious advantage would 
be to allow pre-selection of the most rehable power sources for cntlcal 
mlsslons such as space exploration or other remote operations 

This concept of specific lifetime prediction was explored previously by 
Byers and Perone [l] for sealed Nl/Cd space cells tested at Crane Naval 
Weapons Support Center The basic approach involved the use of pattern 
recogmtlon techniques to determine d measurements of cell mltlal character- 
lstlcs could be used to predict the lifetime of specific cells relative to other 
cells with common ongms operated under slmllar condltlons The basic 
premise was that the ultimate fate of a cell 1s reflected m a multi-variate 
exammatlon of its mltlal fabncatlon and/or behavioral characterlstlcs These 
measurements of mltlal charactenstlcs become the “features” or “descnp- 
tors” utlhzed m pattern recogmtlon analysis to determme If cells which are 
destined to be “long-1lved” can be dlscnmmated from those destined to be 
“short-lived” 

The results of this mltlal study of pattern recogrntlon lifetime predlc- 
tlon [l] demonstrated that Nl/Cd cells from the same production lot, with 
slmllar fabrlcatlon and operational condltlons, could be categorized from 
initial measurements with virtually 100% accuracy. Combmatlons of as few 
as 1 to 3 features were required to ducnmmate between predicted “short- 
lived” and “long-lived” cells These features were derived from manufac- 
turer’s pre-test data documenting behavior during mltlal acceptance cycle 
tests The most useful features involved measurements of voltage or pressure 
changes near the end of a charging cycle Cluster analysis of these features 
suggested that a quantltatlve value of relative hfetlme might be assigned to 
a specific cell based on the average life of its nearest neighbors m feature 
space (Thu last observation was very tentative because of the small size of 
the mdlvldual clusters m the limited data set ) 

The results of this initial study provide several lmphcatlons 
(I) that for a new set of Nl/Cd cells fabncated ldentlcally to the prevl- 

ous set It would be possible to predict lifetimes of specific cells, relative to 
all other cells operated slmllarly, based on pattern recogmtlon analysis of 
mltlal cycle test data, 

(11) that certam mltlal measurements may be more sensltlve hfetlme pre- 
dictors, and these may be useful m ldentlfymg cntlcal fabrlcatlon/operatlon- 
al factors dictating lifetime, 

(m) that quantltatlve lifetime prediction would be possible by applymg 
cluster analysis to a larger data set; 



25 

(iv) that imminent failure of batteries might be predicted from monl- 
tormg of current cycle behavior 

These lmphcatlons need to be evaluated m a systematic future study 
One premise of the earlier work which will be mvestlgated here 1s the general 
apphcablhty of the observations with Ni/Cd cells to other battery types 
It 1s the pnmary goal of the study reported here to evaluate this premise 
by applying the same lifetime predlctlon techniques to a set of lead/acid 
batteries 

The rationale for exammmg the TRW data base for life-cycling of 108 
ESB EV-106 6-V. golf cart batteries [2] is as follows. 

the study was well-designed and well-documented; the number of items 
with common ongms and test condltlons was sufficiently large for reliable 
pattern recognltlon studies (which requve a large ratio of patterns to fea- 
tures [3]); and lead/acid batteries represent a mature technology so that 
posltlve results could be directly useful 

One hmltatlon of the use of the TRW data base, however, 1s the fact 
that detalled voltage-time data were not uniformly available Thus, this 
study was limited to an exammatlon of more mdlrect evidence of battery 
characterlstlcs These included capacity trends over the first 8 or 9 cycles, 
and acceptance test measurements of specific gravity and water addition 
required for each cell 

Descnptlon of the TRW data base 

The test program undertaken by TRW [2] was designed to apply a dally 
charge/discharge cycle program to 108 lead/acid 6-V batteries until failure 
The condltlons controlled Included charactenstlcs of a chopper-controlled 
discharge (frequency, duty cycle), average/peak discharge current, and depth 
of discharge 

Over a 2-year life-cycling period, 69 percent. of the batteries faded 
Experimental correlations showed that battery cycle hfe was inversely pro- 
portional to depth of discharge and discharge current No slgruflcant effect 
on lifetime was detected for dtiferent chopper discharge frequencies and 
duty cycles The failure dlstrlbutlon for items with contmuous (d c ) 
discharge current was slmllar to those items with chopper-controlled 
discharges. 

The failure mode observed involved a gradual loss of capacity to the 
half-capacity failure point Twenty-three of the falled batteries were sub- 
Jetted to autopsies which showed consistent evidence of cell element aging 
Every battery examined exhlblted short cu-cults caused by metalhc bndgmg 
across the plates at separator edges Except for two early failures, every 
failed item examined exhlblted buckled posltlve plates and oxidized posltlve 
grids This umformlty of failure mode and physlcal aging charactenstlcs 
establishes a situation for pattern recognltlon analysis which 1s much more 
nearly ideal than for the earher study with Nl/Cd cells [ 11. 
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An mtroduction to pattern recognition methods 

There are many useful techniques for mathematical pattern recognltlon 
The reader is referred to any of several useful texts on this subJect [4 - 91 for 
detailed discussion A bnef mtroductlon to the concepts will be provided 
here 

Mathematical pattern recognition methods take advantage of the com- 
puter’s ability to manage multi-dimensional mformatlon and perform a series 
of relatively simple, but numerous, statistical and geometrical computations 
A generalized pattern recognition procedure mvolves several steps The first 
step mvolves accumulation of observable data (ddlmennonal pattern space) 
from a physical system Because the raw data space may be of large dlmen- 
sion, some reduction of dlmensionahty is desired to obtain subsequent 
reliable classrbcation. This step mvolves the defuutron of r-dimensional 
feature space, where r < d. The reduction of dimenaonahty should mclude 
ldentlflcatlon of those features which correlate most strongly with mter-class 
mformatlon The next step mvolves application of a decision algorithm 
appropriate for classifymg the mdlvldual sources of mformation into any of 
2 different classes These decisions are apphed m r-dimensional feature space 

Classlflca tlon methods 
Various generally-applicable mathematical procedures for pattern clasa- 

flcation have been developed Two of these appear to be particularly useful 
for the studies here One of these involves Linear Drscrlmmant Analysis 
(LDA) [4, 71, and the other mvolves the k-Nearest Neighbor (kNN) classdi- 
cation criterion [ 7, 81. 

Trainable pattern classlhers, a sub-class of learning machmes [4], are 
used m Linear Dlscrlmmant Analysis The r pieces of information (r features) 
describing a pattern can be plotted as a point m r-dimensional feature space 
It is assumed that patterns with slmllar properties will occupy the same 
region of feature space. LDA pattern classification mvolves fmdmg linear 
boundaries which will discrimmate between these spatial regions. 

A two-category pattern classifier can be defined by a dlscrimmant func- 
tion which 1s a scalar, single-valued function of the pattern If the patterns to 
be classified are linearly separable, then the dlscrlmmant function takes the 
form 

r+1 

s = z w,x, 
x=1 

where X, is the zth component of a pattern having r features, x,, 1 equals one, 
w, 1s the weight correspondmg to the lth component, and s is the scalar 
result The category m which a given pattern is placed is determined by the 
Sign of s 

A set of representative patterns of known classes, the trammg set, 
is presented sequentially to the classlfler When a pattern is mcorrectly 



categorized, the weights of eqn (1) are adJusted m a manner to correct the 
error If the training set 1s linearly separable, this procedure will converge to 
a single weight vector which can cdrrectly classify all the patterns Subse- 
quently, unknown patterns of similar ongms can be classlfled by the tramed 
classifier 

The h-Nearest Neighbor classlflcatlon rule simply states that an 
unknown pattern 1s classlfled accordmg to a maJonty vote of its k-nearest 
neighbors m rdlmenslonal feature space Computatlonally, the Euclidian 
distances between the single r-dlmennonal point representing the pattern m 
question and all other pattern points m r-space must be calculated to fmd 
the nearest neighbors The distance, m r-space, between two points 1 and 1 1s 

Q, = i @tk 

[ 
- Xjk )* 

k=l I 

l/2 

(2) 

Because the distances are a non-linear function of the features, the hNN 
method can be apphed to non-lmear classlflcatlon problems 

Feature selection techmques 
Feature selectlon mvolves reducmg the dlmenslonahty of a problem by 

ehmmatmg pattern descnptors unnecessary for classlflcatlon and retaining a 
sub-set of pattern descnptors (features) which are required for classlficatlon 
Statlstlcal feature selection methods of the prmclpal components type work 
well for data sets with well-defined dlstnbutlon functions 

For non-parametnc classlflcatlon problems, various transform methods 
have been used [lo - 131, as well as a host of other baslcally emplrlcal 
approaches However, most workers agree that only an emplrlcal tnal-and- 
error, all-possible-combmatlons approach guarantees fmdmg the optimum 
feature set. Thus, m our work a systematic tnal-and-error feature ehmmatlon 
procedure was used [ 131, guided by visual exammatlon of feature plots All- 
possible-combmatlons of small feature sets were also used. 

Results and dlscusslon 

Defmltlon of features and sets for lzfetlme predlctlon 
Ltfetlme dlstrlbutlons 
Figure 1 shows the overall lifetime dlstnbutlon for all 108 battenes m 

the TRW study. (The large block at the upper end of the dlstnbutlon repre- 
sents 32 batteries unfalled at the end of the test period of 589 cycles ) One 
of the most crucial steps m the exammatlon of the hfe-cychng data 1s the 
assignment of battery lifetime mto various categones such as “short”, 
“long”, “average”, or other The approach used m the previous study [l] 
mvolved the use of naturally-occurrmg break(s) m the failure dutnbutlon(s) 
to define “long-1lved” and “short-1lved” classes The same approach was 
adopted here 
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LIFETIME DISTRIBUTION ALL BATTERIES LIFETIME DISTRIBUTIONS 
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Fig 1 Lifetime dlstrlbutlon for all 108 batteries Large block at upper end represents 32 
unfalled batteries after 589 cycles 

Fig 2 Lifetime dlstrlbutlons for the DOD = 50 sub-set of 48 items and the DOD = 75 

sub-set of 30 items Blocks at upper ends represent unfaded batteries after 589 cycles 

The validity of the failure dlstrlbutlon for lifetime categorlzatlon 
depends on the uniqueness of the data sub-set selected The set presented m 
Fig 1 includes all items regardless of varlatlons m test condltlons, and as 
such 1s not very useful In this study, for example, it has been observed that 
lifetime 1s dependent on depth of discharge (DOD) and on average discharge 
current (IAV) Figure 2 illustrates the differences m lifetime dlstrlbutlons for 
DOD = 50 and DOD = 75 (Again, the upper block m each case represents 
items unfalled after 589 cycles.) Each of these dlstrlbutlons could be further 
subdlvlded mto sub-sets with constant IAV Unfortunately, these sub-set 
limits would be too restrlctlve for analysis of the TRW data base, because no 
more than 15 items could be included m a single sub-set Three different 
nominal depths of discharge were applied - 25, 50, and 75%, and 7 different 
values of IAV were employed, varying from 20 to 260 A 

Because the rehablhty of pattern recogmtlon assignments decreases 
significantly when the ratio of patterns to features drops below about 5 [3], 
it 1s desvable to utlhze a larger pattern set to allow pattern recogmtlon m a 
higher dimension feature space The basic approach taken here to defme 
larger sub-sets of the test data for lifetime predlctlon involved, firstly, 
normahzmg the cycle-life characterlstlc with respect to influential param- 
eters Secondly, the items were grouped according to DOD m examining the 
failure dlstrlbutlons This allowed the ldentlflcatlon of 3 sub-sets, corre- 
sponding to the 3 DOD values, 25,50, and 75 Because only 27% of those m 
the first sub-set had failed (8 items) by the end of the test program, that sub- 
set was not useful here The other two sub-sets had 81% and 97% failures (39 
and 29 items, respectively), and were useful sub-sets for pattern recogmtlon 

Normahzed llfetlme dzstrzbutzons 
Normahzatlon of the cycle-lde characterlstlc was accomphshed accord- 

mg to one of two relatlonshlps The first was referred to as “REGLIFE” It 
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was equated to the deviation of observed lifetime from the regression fit to 
the expression 

FLCYNO = A + B*IAV (3) 

where FLCYNO 1s the number of cycles to failure, and IAV is the average 
discharge current The constants, A and B, are determmed from a fit to all 
data where DOD 1s constant Then, for each failed battery m the DOD sub- 
set, the value of REGLIFE 1s calculated 

REGLIFE = FLCYNO -A - B*IAV (4) 

The second normahzatlon function was baaed on the calculation of a 
relative lifetime, referred to as “RELIF” It was equated to the ratlo of the 
observed lifetime for a speclflc battery to the average lifetime for all other 
batteries where DOD and IAV are the same 

RELIF = FLCYNO/AVG( FLCYNO) (5) 

The dlstrlbutlons of REGLIFE and RELIF were determined for all 
batteries m the two sub-sets correspondmg to DOD = 50 and 75 (For con- 
venience, these will be referred to as the DOD50 and DOD75 sub-sets ) For 
the DOD50 sub-set, the maximum number of members was 48 However, 3 
batteries failed prematurely at less than 173 cycles and were eliminated 
arbltrarlly from conslderatlon This provided a useful sub-set of 45 items 
Nine batteries had not faled by the end of the test period. (SIX of these 9 
were tested under the least strenuous condltlons (IAV = 20 A) ) Each of 
these items was assigned an arbitrary hfetlme of 625 cycles, obtained from 
an extrapolation of a plot of lifetimes us IAV The maximum measured hfe- 
time was 589 cycles, after which the test was dlscontmued The median 
lifetime for the DOD50 sub-set of 45 items was 495 cycles. 

For the DOD75 sub-set, the maximum number of members was 30 
There were no premature failures, Only one battery was unfalled at the end 
of the test period It was assigned an extrapolated arbitrary lifetime of 600 
cycles The median hfetlme for the 30-item DOD75 sub-set was 403 cycles 

The values of the regresslon constants determined from the fits to eqn. 
(3) for the DOD50 and DOD75 sub-sets are listed m Table 1. Figures 3 and 4 
present the dlstrlbutlons of REGLIFE and RELIF for the DOD50 and 
DOD75 sub-sets of 45 and 30 items, respectively By contrast with Fig. 2, It 

TABLE 1 

Regresslon constants for fits to eqn (1) 

Test sub-set Regression constants 

A (cycles) B (cycles/A) 

DOD50 608 9 -0 7864 

DOD75 444 7 -0 2526 
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REGLIFE DISTRIBUTION DOD50(45) REGLIFE DISTRIBUTION OOD75(30) 
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Fig 3 LIfetIme dlstrlbutlons based on REGLIFE normahzatlon function (REGLIFE = 
FLCYNO -A - B*ZAV ) (A) For DOD = 50 sub-set of 45 Items, with 3 premature fall- 
ures excluded (B) For DOD = 75 sub-set of 30 items 
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Fig 4 Lifetime dlstrlbutlons based on RELIF normahzatlon function (RELIF = 
FLCYNO/AVG(FLCYNO)) (A) For DOD = 50 sub-set of 45 items, with 3 premature 
failures excluded (B) For DOD = 75 sub-set of 30 items 

appears m each case that the DOD50 and DOD75 dlstrlbutlons might be 
combined into a single set However, subtle differences m the DOD50 and 
DOD75 dlstrlbutlons are observed for both REGLIFE and RELIF One of 
these differences 1s obvious m comparmg the ranges of the dlstrlbutlons for 
the DOD50 and DOD75 sub-sets m Figs 3 and 4 In both cases the DOD75 
range is considerably broader than for the DOD50 range Another funda- 
mental difference becomes clear when class boundarles are defined by 
pattern recognltlon as discussed below 

Ca tegoma tton 
Exammatlon of Figs 3 and 4 shows that some natural breaks appear m 

the normahzed failure dlstrlbutlons These can be used as a first cut asngn- 
ment of lifetime classes for pattern recogmtlon. For example, m Fig 3(A) 
and (B) it appears that several possible “breaks” might be considered to 
dlstmgulsh between “short-1lved” and “long-lived” classes. The obvious 
breaks m Fig 3(A) occur at REGLIFE values of -(--80, -35, and +70), 
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those m Fig 3(B) occur at REGLIFE values of -(-150, --8O,O, and +lOO) 
However, several other breaks appear when any regions of the histograms 
are expanded 

The selection of any particular boundary for categorlzatlon depends on 
two things One of these is the purpose of the categonzatlon. For example, 
several different bmary categonzatlons could be considered, where the pur- 
poses might be to Identify the very best cells, the very worst cells, or to 
simply distinguish between the two classes “better” and “worse”. In addl- 
tlon, a 3-class categorlzatlon could be considered which included the best, 
worst, and middle classes Arbitrary boundaries can be assigned based on 
naturally occurring breaks once the purpose has been defined. For example, 
if a simple binary categorlzatlon of “better/worse” is desued, the first-cut 
boundaries for Fig 3(A) and (B) might be -36 and 0, respectively 

The second criterion for selection of category boundaries 1s based on 
the observed performance of the selected boundary for pattern recognition 
classlflcatlon of cells with known performance The selected boundaries can 
be further refined by adJustmg them for optimum classification accuracy 
from pattern recognition examination of measurement features 

Defvutlon of features for pattern recogmtlon 
The features used for pattern recognltlon lifetime prediction were taken 

from documentation of the prehmmary exammatlon and mltlal acceptance 
tests applied to all EV-106 batteries prior to commencmg hfe-cycle testing. 
These included measurements of the speclflc gravltles, battery weights, and 
volume of water required to achieve uniform levels for each cell/battery as 
received, as well as discharge capacity values over 8 or 9 acceptance cycles 

These u&al acceptance data were used to generate pattern features for 
each battery The most useful features fell into 4 categories 

(1) Initial Specific Gravity 
(11) Initial Water Volume Added 
(iii) Initial Capacity Trends 
(iv) Transformed/Combmed Variables 

A total of 10 features proved to be useful, and these are summarized m 
Table 2 

A summary of the variances of each of the pattern features for two 
different sub-sets 1s provided m Table 3 Because of the wide disparity m 
values of the features, all pattern recogmtlon studies were conducted with 
standardized vanables, where the standardized value, X(S), 1s defined 

x(s) = (x(l) - x(ave))/(s.d ) (6) 

Thus, the ranges of all standardized variables were -(+/-3) 
As expected, some of the features were highly correlated However, as 

observed m previous studies [13 - 151, the use of statlstlcally correlated 
features can be Justified and useful for pattern recogmtlon where normal 
dlstrlbutlons are not observed. This IS certainly the case for our data. 



32 

TABLE 2 

Classlflcatlon features for each EV-106 battery based on EV-106 acceptance tests 

Name 

AVSG 

MXH 

INCAP 
MXCP 
MNCP 

AVSGZ 
MXH2 
SGH 
DLCP 
INDL 

Type 

Specific gravity 

Water volume added 

Imtlal capacity trends 

Transformed variables 

Descrlptlon 

Average speclflc gravity 3 cells 

Volume for cell requiring most water 

Average capacity of acceptance cycles 
Maxlmum capacity from acceptance cycles 
Mmlmum capacity from acceptance cycles 

(AVSG)* 
(MXH)* 
AVSG*MXH 
MCXP - MNCP 
INCAPIDLCP 

TABLE 3 

Feature values for two sub-sets 

Feature DOD50 (45) DOD75 (30) 

Avg SD Avg SD 

AVSG 1 278 0 006 1 278 0 004 
AVSGB 1 633 0 014 1 634 0 010 
MXH (ml) 91 8 38 7 91 7 36 4 
MXH2 (ml)* 9888 7728 9682 7031 
SGH (ml) 11 7 x 104 4 2 x 104 117 x 104 46~70~ 
INCAP (A h) 106 9 15 107 2 11 
MXCP (A h) 114 2 21 113 7 22 
MNCP (A h) 103 8 21 104 3 11 
DLCP (A h) 10 4 23 95 22 
INDL 10 8 24 11 9 25 

The selection of 
part of any pattern 
described below 

Data analym 

an optimum feature set for classification is a crucial 
recognltlon study, and the procedure used here 1s 

Classlficatlon procedures 
Two different techniques were used for pattern recognltlon lifetime 

predlctlon Linear Dlscrlmmant Analysis (LDA) , and h-Nearest Neighbor 
analysis (hNN) (These were dlscussed m an earlier section ) The LDA meth- 
od allows accurate classlflcatlon when classes can be separated by a linear 
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boundary (line, plane, hyperplane) m feature space Once a dlscrlmmant 
function 1s found which provides accurate classlhcatlon, the apphcatlon of 
this function to pattern recogmtlon IS computatlonally simple However, the 
restrlctlon to linearly separable classes precludes apphcatlon m many cases 

The hNN method allows accurate classlflcatlon as long as items of 
similar class form clusters m feature space These need not be linearly sepa- 
rable for clasahcatlon, as long as slgnlflcantly different spatial dlstrlbutlons 
are obtained However, the kNN algorithm requires much more extensive 
computations at the time of classlflcatlon 

For slmphclty, a value of h = 1 was used for nearest neighbor calcula- 
tions A “leave-one-out” procedure was used to evaluate classification 
accuracy That is, each item was removed from the trammg set, and treated 
as an item of unknown class Its class 1s then assigned to be the same as its 
nearest neighbor It 1s then returned to the trammg set, and the next item 1s 
removed for classlflcatlon 

An iterative feature-weighting procedure was also used m the hNN 
method here That is, feature weights were systematically varied by multiples 
of 2 to obtain an optimum combmatlon of weights for maximum accuracy. 

Feature plots 
An exammatlon of pattern dlstrlbutlons m feature space provides useful 

insight to the apphcablhty of LDA or kNN classification techniques Figure 5 
shows a feature plot of INCAP and SGH for the DOD75 sub-set, where class 
assignments were based on the optimum boundary for the REGLIFE 
dlstrlbutlon (discussed below) In this case the two classes are linearly 
separated m 2-d feature space Thus, the LDA method works very well for 
classlflcatlon One possible linear boundary which would provide accurate 
classification is also illustrated m Fig 5 The LNN method does not work 
well for this dlstrlbutlon 

Figure 6 shows a weighted feature plot of INDL and MXH2 for the 
DOD50 sub-set, where class assignments were based on the optimum bound- 
ary for the REGLIFE dlstnbutlon Clearly, the long-lived and short-lived 
classes exhibit different dlstrlbutlons, but are not linearly separable m 2- 
space When a third feature (SGH) 1s added, the class dlstrlbutlons become 
separated sufflclently to allow accurate hNN classlflcatlon (see Results 
Section) 

Feature ellmmatlon procedures 
Two different methods were used to obtain a mmlmum feature set for 

optimum classlflcatlon One of these involved using all possible combmakons 
of 1, 2, or 3 features from those defined m Table 2 The other involved a 
sequential ehmmatlon procedure [ 131 

The sequential ehmmatlon procedure involved first conductmg clasnfl- 
cation with all features used Then one feature 1s removed and classlflcatlon 
1s agam conducted. If classlflcatlon accuracy 1s unchanged or improved, the 
feature 1s permanently ehmmated. If not it 1s returned to the feature set. 
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FEATURE PLOT DOD75(30) WEIGHTED FEATURE PLOT DOD50(45) 
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Fig 5 Feature plot for DOD = 75 sub-set of 30 Items Llfetlme class assignments based 
on optimum boundary from REGLIFE dlstrlbutlon (see Table 4) (REGLIFE = 
FLCYNO -A - B*ZAV ) 

Fig 6 Welghted feature plot for DOD = 50 sub-set of 45 Items Llfetlme class asslgn- 
ments based on optimum boundary from REGLIFE distribution (see Table 5) 
(REGLIFE = FLCYNO -A - B*ZAV ) 

This process continues until a minimal feature sub-set 1s obtained where no 
further improvement m classlflcatlon accuracy 1s observed by ehmmatlon 
This method proved useful for mmlmal feature sets greater than 3 However, 
the ehmmatlon sequence 1s too arbitrary to guarantee ldentlflcatlon of the 
optimum feature sub-set, particularly for small sets The all-posable-combl- 
nations approach was practical and effective for up to 3 features 

Optlmlzmg class boundaries from llfetlme dlstrlbutlons 
Although several different category defmltlons were used m this study, 

this report focusses on the simple binary classlflcatlon issue where batteries 
were simply dlvlded mto longer-lived and shorter-hved classes It was 
expected that this would lead to some overlap m the middle, and that less 
than 100% accuracy would be achieved. However, ldentlflcatlon of these two 
classes appeared to be a reallstlc goal for real apphcatlons of these methods 
to battery lifetime prediction When only high accuracy was the goal we 
were able to achieve that by dlscrlmmatmg only the very best or the very 
worst batteries from the rest 

The method used to ldentlfy the optimum class boundaries from hfe- 
time dlstrlbutlons involved, first, selectmg arbltrarlly, a naturally-occurring 
break m the dlstrlbutlon Pattern classlficatlon was applied to the defined 
classes as a training set, and the resultant accuracy observed The boundary 
was then adjusted m e&her dlrectlon searching for maximum classlflcatlon 
accuracy 

Classzfzca tion results 
Exammatlon of Tables 4 and 5 verifies that pattern recognltlon 

provides accurate prediction of lifetime class based on battery acceptance 
test data Both the LDA and IzNN methods proved useful The LDA method 
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TABLE 4 

Summary of classlflcatlon results with lmear dlscrlmmant analysis 
(Long-lived batteries = class 1, short-lived = class 2) 

DOD Data base sub-set Classlflcatlon Features required Classlhcatlon results 

No 
- crlterlon/boundary 

Class dls- % %(2) %(l) 
Items trlbutlon correct 

(l)/(2) 

50 39(a) 29/10 RELIF/(O 909) (5) AVSGB, MXHP, 87 2 100 82 8 
SGH, INDL, 
INCAP 

50 45 3817 RELIF/(O 877) (4) MXHB, SGH, 85 5 842 57 
INDL, INCAP 

50 44(b) 32/12 REGLIFE/(-34 34) (3) SGH, INDL, 81 8 92 0 78 0 
A = 608 9 INCAP 
B= -0 7864 

75 30 16/14 RELIF/(O 977) (2) SGH, INCAP 83 3 85 7 81 2 
75 30 16/14 REGLIFE/(-15 04) (2) SGH, INCAP 83 3 85 7 81 2 

50175 69(a) 57112 RELIF/(O 878) (4) MXHB, INDL, 81 2 75 0 82 5 
DLCP, INCAP 

(a) Features of batteries with IAV = 20 removed from data base (All but one unfaded at 
end of test ) 
(b) One battery (s/n = 16) removed from data base because of anomalously low hfe for 
IAV = 20 

TABLE 5 

Summary of classlflcatlon results with K-nearest neighbor analysis 
(Long-bved batteries = class 1, short-lived = class 2) 

DOD Data base sub-set Classlflcatlon Features required Classification results 

No Class dls- 
crlterlon/boundary 

% %(2) %(l) 
items trlbutlon Correct 

(l)/(2) 

50 39(a) 29/10 RELIF/(O 909) (3) AVSGZ, MXHS, 87 2 700 93 1 
DLCP 

50 45 32113 REGLIFE/(-34 34) (3) MXHB, SGH, 84 4 84 6 84 4 
A = 608 9 INDL 
B= -0 7864 

75 30 17113 RELIF/(O 953) (2) SGH, DLCP or 66 7 69 2 64 7 
MXH2, DLCP 

75 30 18/12 REGLIFE/(--22 2) (2) SGH, INDL or 76 7 66 7 83 3 
A = 444 7 MXHB, INDL 
B= -0 2526 

50/75 69(a) 57/12 RELIF/(O 878) (4) AVSGZ, MXH2, 85 5 500 93 0 
SGH, INCAP 

(a) Features of batteries with ZAV = 20 removed from data base (All but one (s/n = 16) 
were unfaded at end of test ) 
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provided the most accurate lifetime classlflcatlons for all sub-sets For each 
sub-set, overall classlflcatlon accuracy of -85% was achieved Best results 
were obtained for the DOD50 sub-set, where classlficatlon accuracy for 
short-lived batteries approached 100% High accuracy m ldentlfymg poten- 
tial short-lived battenes provides a significant incentive for practical 
apphcatlons of predlctlve lifetime classlflcatlon 

There did not appear to be any slgmflcant advantage for either of the 
two lifetime normahzatlon methods, REGLIFE or RELIF Both worked 
well However, the RELIF dlstrlbutlon was the only one that could be used 
for the DOD50/75 sub-set because the REGLIFE dlstnbutlons for DOD50 
and DOD75 were so different 

The size of the DOD50 sub-set was vaned m these studies to examine 
the effects of various anomalies m the test items These are documented in 
Tables 4 and 5 The primary concern was how to handle the batteries which 
had not falled by the end of the test In one case (DOD50 sub-set with 39 
items, (DOD50 (39)) all batteries where IAV was 20 A were excluded, as 
most of these had not failed by the end of the test, The classification 
accuracy for this sub-set was the highest of all, with short-lived batteries 
being identified with 100% accuracy 

Another questionable test item was a battery (s/n = 16) m the DOD50 
sub-set which had an exceptionally low lifetime (438 cycles) for an IAV of 
20 A Because all other batteries tested under these condltlons were unfalled 
at the end of the test (589 cycles), this battery might be considered anom- 
alous. By way of confumatlon, an autopsy [2(a)] of this battery revealed that 
the negative plates were “hard and dry”, a condltlon not found m any of the 
other autopsies Thus, this item was excluded from some of the sub-sets 
examined Also, this battery was excluded from regression analysis of the 
DOD50 sub-set Thus, the REGLIFE dlstrlbutlon 1s based on the lifetimes of 
a 44-battery DOD50 sub-set 

The boundary values of REGLIFE and RELIF required for optimum 
classlficatlon accuracy are listed m Tables 4 and 5 It 1s interesting to note 
that for both dlstnbutlons the optimum boundary between short-lived and 
long-lived cells is shifted to larger values for the DOD75 sub-set compared 
with the DOD50 sub-set This results m a larger percentage of batteries being 
categorized as “short-lived” m the DOD75 sub-set This 1s not mconslstent 
with the fact that the actual depth of discharge was -93%, as pointed out m 
the TRW/NASA report [2] Moreover, for large values of IAV, the effective 
depth of discharge approaches 100% Thus, it 1s not surpnsmg that the 
fraction of battenes which cluster together as a short-lived group 1s larger 
for the DOD75 sub-set Also, the relatively poor classlflcatlon accuracy 
obtained when the DOD50 and DOD75 sub-sets are combined 1s very likely 
explained by the slgnlflcantly different dlstnbutlons of the two classes for 
the two sub-sets 

The vahdlty of the pattern recognltlon results 1s substantiated by the 
low ratio of features to patterns requved for accurate classlflcatlon m each 
case The largest ratio required was for the DOD50 (39) sub-set with the 



37 

LDA method (-1:8), (Table 4) Typically, the ratlo required was - 1 15 In 
any case, the ratios obtained were much lower than required (- 1 5) for 
credible pattern recogmtlon classlflcatlon [ 31 

The most useful features for predlctlve hfetlme classlflcatlon appeared 
to be SGH and INCAP, based on the high frequency of then appearance m 
the mmlmum feature sets for accurate classlflcatlon This observation 1s 
certainly consistent with the mtultlve perception that differences m specific 
gravity, water added, and mltlal capacity trends should be meanmgful pre- 
dictors of battery hfe It 1s clear, however, that the relatlonshlps between all 
features studled and battery hfetlme are non-lmear and multlvarlate 

Conclusions 

This study has clearly demonstrated the feasibility of predlctlve lifetime 
classlflcatlon for uniformly fabncated lead-acid batteries Moreover, the 
utility of acceptance tests documentmg trends m specific gravity, water 
added, and mltlal capacity has been shown. The accuracy of predlctlve clasn- 
flcatlons 1s sufflclently high, particularly for the ldentlflcatlon of short-lived 
batteries, for the practical apphcatlon of this method to be explored 

Perhaps of more importance 1s the fact that this type of study may 
provide new insight to factors which affect battery life - as reflected m the 
useful features for predlctlve lifetime classlflcatlon For example, we should 
like to know why water-added 1s a sensitive mdlcator To examme such 
questions, we are currently undertakmg a new study documentmg added 
water and acid content changes (as well as other measures) during acceptance 
cycles m a hfe-cyclmg experiment with lead-acid batteries 

The general apphcablhty of the predlctlve features and the classlflcatlon 
methods studied here for lead-acid batteries of various origins remam to 
be investigated In addltlon, it 1s desirable to examme the utlhty of more- 
detailed charge-discharge voltage trend data for predlctlve hfetlme classlfica- 
tlon Moreover, it would be desirable to examme a slgnlflcantly larger 
population of test articles to evaluate the feaslblhty of quantltatlve lifetime 
prediction which had been suggested m the earher study with Nl/Cd cells 
Cl1 
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